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SYNOPSIS 

The deformation of nylon drops in polyethylene, with and without an interfacial agent, in 
an extensional flow has been studied. The presence of an interfacial agent reduces the size 
of the dispersed phase, and the deformation of the drop is reduced. An analysis is given, 
which accurately predicts the deformation for all values of the capillary number considered. 
The predicted and observed shapes are, however, only in agreement at low values of capillary 
number. Possible causes for this discrepancy are discussed. 0 1996 John Wiley & Sons, Inc. 

I N T R O  DUCTI 0 N 

The physical blending of two or more polymers re- 
sulting in a new product with desired properties is 
of great industrial importance.' From a rheological 
viewpoint, polymer blends can be considered to be 
dispersions of deformable polymeric drops in poly- 
mer melts. The mechanical properties of the blends 
depend on the state of the dispersion; that is, they 
depend on the shape, size, and orientation of the 
dispersed phase. It has been found that the addition 
of interfacial agents can improve the properties of 
blends of immiscible  polymer^.^-^ 

Taylor5 initiated the study of the deformation of 
a drop in a Newtonian fluid. Since then, numerous 
investigators6-'' have considered drops in Newtonian 
and non-Newtonian fluids. Rallison'2 and, more re- 
cently, Stone13 have reviewed the major contribu- 
tions in this area. Tsebrenko et al.14 have summa- 
rized the experimental results of the deformation 
and breakup of polymeric particles in mixtures of 
immiscible polymers in various flow situations. Also 
relevant to the present work are the studies of Mil- 
liken et al.15 and Milliken and Leal16 on the effects 
of surfactants on drop deformation in various flow 
situations. Many of the previous authors have con- 
sidered the deformation of a drop in a shear flow 
and in a planar extensional flow. In many industrial 
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applications, the flow is a uniaxial elongational flow, 
and it is desirable to consider the drop deformation 
in such a flow. 

In the present paper, we examine the deformation 
of drops of nylon-6 in polyethylene in a uniaxial 
extensional flow. The effects of the presence of an 
interfacial modifier is also considered. 

EXPERIMENTS 

Four kinds of commercial polyethylene 07055C 
( PE1) ,05054C ( PE2 ) , and 36056 ( PE3 ) from Dow 
and 2914 (PE4) from DuPont are used as the matrix. 
The minor phase is nylon-6 (PA6) Zytel from 
DuPont. In some cases, Surlyn 9020 from DuPont 
is added as an interfacial agent. This ionomer is a 
random terpolymer consisting of approximately 80% 
PE and of 20% of a mixture of methacrylic acid and 
isobutyl acrylate. The methacrylic acid is approxi- 
mately 70% neutralized with zinc. Willis et al.'? have 
shown that this ionomer is an excellent compati- 
bilizing agent for PA/ PE systems. 

Covalent bonding was shown to take place be- 
tween the carbonyl of the ionomer and the terminal 
amine of the polyamide.18 The melt densities a t  
250°C of PE, PA6, and ionomer are 0.74, 0.96, and 
0.74 g/mL, respectively. 

The mixture is prepared in a twin screw extruder 
(ZSK-30 Werner-Pfeiderer) , and the blend is then 
extruded through a single screw Brabender-type ex- 
truder with a rectangular slit. The extruded tem- 
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perature is 250°C. The rectangular sheet is then 
taken up on a roll, which is water-cooled. The ex- 
perimental setup is shown in Figure 1. The take-up 
velocity V, a t  the roll is greater than the extrusion 
velocity V,, and the flow can be considered to be an 
extensional flow. The area Ao, the thickness ho, and 
the velocity V,  at  the exit of the extruder are 3.567 
X lop5 m2, 1.524 X lop3 m, 6.5 X lop3 m/s, respec- 
tively. 

The length L and the half width W of the sheet 
are 1.2 X lo-' and 2.341 X 

The rheological properties of the materials are 
determined using a Bohlin CS rheometer, a parallel 
plate Weissenberg rheometer, and an Instron cap- 
illary rheometer. Figure 2 shows the viscosity q( +) 
and the dynamic viscosity I q*( w )  I of some of the 
polymers. 

A scanning electron microscope (JOEL 35 CF) 
is used to analyze the size and shape of the dis- 
persed phase. A Jandel digitizing tablet controlled 
by the Jandel Sigma-Scan system is used to mea- 
sure the size and shape of the dispersed phase. 
About 200 droplet diameters are measured, and a 
correction is applied to the distribution of diam- 
eters for each sample according to the method 
given by Saltikov.'' The required samples are pre- 
pared in liquid nitrogen, following the mixing and 
spinning steps. 

In the die, the flow is a shear flow, and an initially 
spherical drop deforms into an ellipsoid and orients 
itself a t  an angle to the direction of the flow. A t  low 
shear stress [Fig. 3 ( a )  1,  there is no significant de- 
formation, and the dispersed phase can be assumed 

m, respectively. 

A 

Figure 1 Extrusion of a plane sheet. 
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Figure 2 Viscosity v( +) versus shear rate +, and dy- 
namic viscosity I v*( w )  I versus frequency w: (v) [ q*( w )  I 
Bohlin CS, ( V )  I v*( w )  [ Weissenberg, (0) q( +) Weissen- 
berg, and ( 0 )  v( +) capillary. 1 = PE3,2 = PE1,3 = PA6, 
and 4 = PE4. 

to be spherical. At high shear stress [Fig. 3 ( b )  3 ,  the 
particles are ellipsoidal. In the extensional flow, the 
drops are deformed to ellipsoids and are aligned in 
the direction of the flow. The deformation increases 
with increasing draw ratio DR (=  V R / V E ) .  This is 
illustrated in Figures 4 and 5. 

The effects of an interfacial agent are a reduction 
in the size of the drop and a decrease in the defor- 
mation. 

Further details on the sample preparation, on the 
analysis of deformation, and on the rheological 
properties of the polymers are given by Gonzalez- 
Nunez." 

MATHEMATICAL MODEL 

We consider the deformation of a single drop in a 
flow field and assume that the drop is aligned in the 
direction of flow, as shown in Figure 6. We first 
compute the stress field in a sheet of fluid, which is 
being drawn downwards, as illustrated in Figure 1. 
Figure 1 also shows the chosen rectangular Cartesian 
coordinate system. Following Anturkar and Co, 21 

we make the following assumptions. 
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Figure 3 
7,: ( a )  7, = 17 kPa and (b)  7, = 29 kPa. 

Deformation of the dispersed phase in a shear flow under different shear stresses 

1. The flow is isothermal, steady, and incom- 
pressible. ties. 

2.  The extrudate swell a t  the exit is not consid- 

3. The velocity component V, is negligible, and 
V, is a function of z only. From the equation 
of continuity and assuming the flow to be ex- 
tensional, we deduce 

We introduce the following dimensionless quanti- 

ered. cf, = VzlVE, Ti2 = ~ ~ ~ L / ( s o V E ) ,  

A = XM/Xo (4a-c) 

H = &/Ao = h( z ) /ho ,  To = FL/(  rloVEAo), 

< = z / L  (4d-g) 

d vz 
dz 

V, = -x ~ + constant rl = r l M / r l O  

where A, and h ( z )  are the area and thickness of the 
sheet a t  position z ;  70, A 0  are constants, and F is 
the tensile stress acting on the sheet. 

The relevant components of the constitutive 
equation, the balance of mass and momentum, are 
given respectively by 

4. The extra stress tensor r - is a function of z 

5 .  Fluid inertia, gravity, surface tension, and air 

6. The sheet is plane. Combining assumptions 

- 
only. 

drag are neglected. 

(4)  and ( 5 )  yields 

7, = -P 

where P is the isotropic pressure. 
7. The constitutive equation used is 

1 + AM(?)! = -??M(?)’ 

* - (w) * 1 t 3b ) The boundary conditions are 

where + is the rate-of-strain tensor, AM and H ( O )  = 1, cf,(O) = 1, 4(1) = DR (8a-c) 
qM are [he relaxation and viscosity functions, 

is the second invariant of +, - and t denotes On integrating eq. ( 6 )  and using eq. (8a,b), we ob- 
the transpose. tain 

- 
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iii) 

a) b) 

Figure 4 Deformation of the dispersed phase in a blend of 20 vol % of PA6 in PE1 
without interfacial agent as a function of DR: ( i )  DR = 1.0, (ii) DR = 2.82, and (iii) DR 
= 3.97; (a )  transversal section, (b )  longitudinal section. 

' H = 1  (9) 

Equation ( 7 )  can be integrated, and imposing the 
condition given by eq. (9) yields 

From eqs. (5a,b and lo ) ,  we deduce an equation for 
4, and it can be written as 

3 
2 4  

-- To' + - ToA'''De + $4 = 0 ( 1 1 )  

where the prime denotes differentiation with respect 
to [. 

Equation ( 11 ) is a second-order equation, where 
TO is unknown. We cannot prescribe both To and 
DR. In our experimental setup, we control DR, and 
To has to be adjusted so as to satisfy eq. (8c). We 
note that for a Newtonian fluid, eq. ( 11 ) reduces to 

The solution of eq. ( 1 2 )  subject to condition (8b) 
is 



a) 

b) 

C )  

Figure 5 Deformation of the dispersed phase in a mix- 
ture of 1 vol % of PA6 in PE1 without interfacial agent 
for ( a )  DR = 1.0, (b)  DR = 2.34, and ( c )  DR = 3.75. 

The relationship between To and DR for a Newton- 
ian fluid is 

For a viscoelastic fluid, eq. ( 11 ) is of second order, 
and we need to impose an additional boundary con- 
dition. Following Denn et al.," Anturkar and Co,'l 
and Agassant et al.,23 we impose the condition 

Equation ( 15) can also be interpreted as a condition 
on G'( 0) ;  and from eqs. (5a,b) and ( l o ) ,  we deduce 
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(16) 
TO 

To - 4ADeqS( 0 )  
v 3  

To=--- ADe 4 

For a Newtonian fluid we obtain from eqs. (5a)  
and (13) 

Equation (11) is solved by the method of matched 
asymptotic expansions, and the solution to order 
De2 is 

G =  I-- + [ T:De 

+ = [ I +  4 

De2T% 

-]exp( 4 T o { / 2 )  

X - + - exp(-</De) + O(De3) (18) [.I% a ]  
A numerical solution, using the Runge Kutta 
method, is also obtained. We have verified that for 
low values of De(De < O . l ) ,  the numerical and 
asymptotic solutions are in agreement. Further de- 
tails on both methods are available in Gonzalez-Nu- 
nez.20 Once I$ has been computed, the stress com- 
ponents can be calculated. 

Figure 7 shows the values of T3, for various values 
of De and for DR = 4.33. The magnitude of T3, in- 
creases with increasing De. Figure 8 illustrates the 
values of T f f  (1) as a function of DR. As expected, 
for low values of DR, the effect of elasticity is neg- 
ligible. The total axial stress 7rff [ = p  + T3, = T3< 
- T,,] at  { = 1 as a function of DR is shown in Figure 
9. For low values of DR, the values of rff (1) for both 
Newtonian and viscoelastic fluids are almost equal. 

We now calculate the deformation that a spherical 
drop undergoes when placed in a stress field. We 
consider an isolated single drop and, as a first ap- 

=5 5 
Figure 6 
flow. 

Deformation of a single drop in an elongational 
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Figure 7 Axial stress as a function of {for various values 
of De: (a )  De = 0.25, (b )  De = 0.20, ( c )  De = 0.15, ( d )  
De = 0.10, and ( e )  De = 0.01. DR = 4.33. 

proximation, we assume that the presence of the 
drop does not affect the elongational flow field. Sub- 
scripts m and d are used to designate the matrix and 
the dispersed phase, respectively. The boundary 
conditions at the interface are as follows: 

where is the unit outward normal, k is the surface 
curvature, and Ca is the capillary number. Choosing 
the center of the drop as the origin of a spherical 
polar coordinate system (r ,  8 , @ ) ,  the radial distance 
r of any point on the surface can be written as 

r = R + C ;  (21) 

where R is the radius of the undeformed drop. 
For a cross section of the drop (@ = constant) 

and for small deformations, k can be approximatedz4 
as 

In our experiments, the range of De is 0.01 to 0.05, 
and the asymptotic solution (eq. 18) is a valid so- 
lution. Transforming the calculated Cartesian com- 
ponents of the stress tensor into spherical coordi- 
nates, substituting into eq. (20) and using eqs. (19) 
and (22) ,  we obtain 

60 - 

50 - 

- 40- 

.J, 30- 

- I 
.cII 

c 
I 

20 

10 

0 

- 

- 

I 2 3 4 5 

D R  

Figure 8 
the same values of De as in Figure 6. 

Axial stress at { = 1 as a function of DR for 

Equation (23) is solved numerically using the Runge- 
Kutta method. We have imposed the conditions that 
a t  0 = r / 2 ,  

- 0  C ; =  Ro and - -  d t  
do 

Knowing [, the major (L') and the minor (B') axes 
of the drop can be computed. It is usual to define 
the deformation D' as 

L' - B' D' = ___ 
L' + B' 

Figure 10 compares the predicted values of D' as a 
function of Ca with the experimental values of 

70 I I 

I 2 3 4 5 

D R  

Figure 9 Total axial stress at < = 1 as a function of DR 
for the same values of De as in Figure 6 and for a New- 
tonian fluid ( f ). 
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blends of PEl/PA6 with and without interfacial 
modifier. Figure 11 shows the shape of the drops for 
various values of Ca. 

DISCUSSION 

Figure 10 shows quantitative agreement between 
theoretical predictions and experimental results, 
even at  high Ca, where we would not expect the small 
deformation approximation to be valid. Delaby et 
al.,25 under a different set of conditions, observed 
similar results. This suggests that in calculating D', 
the small deformation approximation is not very se- 
vere. 

The predicted shape does not agree with our ex- 
perimental observations for Ca > 0.4. For Ca > 0.4, 
we predict a constriction at  the central part of the 
drop, as shown in Figure 11. Experimentally, the 
drops are always ellipsoidal, in agreement with the 
findings of Delaby et al?5 Buckmaster and Flaherty26 
have also predicted that a drop deforms into an el- 
lipse at low values of capillary number; and as the 
capillary number increases, the central portion of 
the drop flattens. Their findings are in agreement 
with ours. The disagreement between our predictions 
and observations may be due to the fact that above 
a certain critical capillary number (Ca,) , the shape 
of the drop is time-dependent, and we have not con- 
sidered time effects. Milliken and Leal" have ob- 
served that for Ca > Cac, the shape of a drop is time- 
dependent as time evolves, keeping all other vari- 
ables constant. The shape changes from an ellipsoid 
to almost a dumbbell. Eventually the drop may 
break. In our experiment, the drop is subjected to a 

1 .o 

0.8 

0.6 

D' 
0.4 

0.2 

I 1 0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1 2  1.4 

C a  

Figure 10 D' versus Ca for a mixture of PE1 and PA6: 
(m) PA6, 20 vol % with interfacial agent, ? m / f ) d  = 1.10; 
(A) PA6, 1 vol % without interfacial agent, t), /f)d = 1.10. 
Predictions of eq. 23: (-) agreement in both defor- 
mation and shape; ( - - - - ) agreement in deformation only. 
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Figure 11 
number. ? m / ? d  = 1.10. 

Shape of a drop for various values of capillary 

variable stress field as it is transported from the exit 
of the die to the roller. That is to say, its residence 
time at constant stress is zero. Consequently, a con- 
striction at its central part does not develop. There 
may be other factors that might contribute to the 
discrepancy between theoretical and experimental 
results. The effects of the presence of other drops, 
of coalescence, and the perturbation on the basic 
extensional flow created by the drop have been ig- 
nored. These factors could contribute significantly 
to the shape of the drop. 

It is observed that the presence of an interfacial 
agent decreases the deformation. As shown in Figure 
10, the deformation in a blend of 20 vol % PA6 in 
PE1 with interfacial agent is similar to that of a 1 
vol % PA6 in PE1 without interfacial agent. 

The present analysis has shown that the defor- 
mation D' can quantitatively be predicted, but a 
more careful analysis is needed to predict the shape 
of the deformed drop. 
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